Identification of Important Invasion-Related Genes in Non-functional Pituitary Adenomas

The objective of this study was to diagnose important genes and pathways related to the invasiveness of NFPAs and gain more insights into the underlying molecular mechanisms of NFPAs. The gene expression profiles of GSE51618 were downloaded from the Gene Expression Omnibus database with 4 non-invasive NFPA samples, 3 invasive NFPA samples, and 3 normal pituitary gland samples. Differentially expressed genes (DEGs) are screened between invasive NFPA samples and normal pituitary gland samples, followed by pathway and ontology (GO) enrichment analyses. Subsequently, a protein –protein interaction (PPI) network was constructed and analyzed for these DEGs, and module analysis was performed. In addition, a target gene–miRNA network and target gene–TF (transcription factor) network were analyzed for these DEGs. A total of 879 DEGs were obtained. Among them, 439 genes w ere upregulated and 440 genes were downregulated. Pathway enrichment analysis indicated that the upregulated genes were significantly enriched in cysteine biosynthesis/homocysteine degradation (trans-sulfuration) and PI3K-Akt signaling pathway, while the downregulated genes were mainly associated wi th docosahexaenoate biosynthesis III (mammals) and chemokine signaling pathway. GO enrichment analysis indicated that the upregulated genes were significantly enriched in animal organ morphogenesis, extracellular matrix, and hormone activity, while the downregulated genes were mainly associated with leukocyte chemota...
Source: Journal of Molecular Neuroscience - Category: Neuroscience Source Type: research