Proteomic investigations of human HERC2 mutants: Insights into the pathobiology of a neurodevelopmental disorder.

Proteomic investigations of human HERC2 mutants: Insights into the pathobiology of a neurodevelopmental disorder. Biochem Biophys Res Commun. 2019 Mar 19;: Authors: Abraham JR, Barnard J, Wang H, Noritz GH, Yeganeh M, Buhas D, Natowicz MR Abstract HERC2 is a giant protein with E3 ubiquitin ligase activity and other known and suspected functions. Mutations of HERC2 are implicated in the pathogenesis of various cancers and result in severe neurological conditions in Herc2-mutant mice. Recently, a pleotropic autosomal recessive HERC2-associated syndrome of intellectual disability, autism and variable neurological deficits was described; its pathogenetic basis is largely unknown. Using peripheral blood-derived lymphoblasts from 3 persons with homozygous HERC2 variants and 14 age- and gender-matched controls, we performed label-free unbiased HPLC-tandem mass spectrometry-based proteomic analyses to provide insights into HERC2-mediated pathobiology. We found that out of 3427 detected proteins, there were 812 differentially expressed proteins between HERC2-cases vs. controls. 184 canonical pathways were enriched after FDR adjustment, including mitochondrial function, energy metabolism, EIF2 signaling, immune functions, ubiquitination and DNA repair. Ingenuity Pathway Analysis® identified 209 upstream regulators that could drive the differential expression, prominent amongst which were neurodegeneration-associated proteins. Differentially e...
Source: Biochemical and Biophysical Research communications - Category: Biochemistry Authors: Tags: Biochem Biophys Res Commun Source Type: research