Berberine promotes osteogenic differentiation of mesenchymal stem cells with therapeutic potential in periodontal regeneration.

In this study, we found that berberine, a benzylisoquinoline plant alkaloid from Coptidis Rhizoma, strongly inhibited the growth of Porphyromonas gingivalis. Gingipain is the most important virulence factor of Porphyromonas gingivalis in the process of periodontal tissue destruction. Berberine also had an inhibitory effect on gingipain activity in a concentration dependent manner. Remarkably, berberine restored the downregulation of osteogenesis-related genes expression in bone mesenchymal stem cells (BMSCs) induced by Porphyromonas gingivalis infection, and significantly increased the expression of osteogenesis-related genes such as OSX, COLI, ALP, OCN and OPN compared to the control group. This results suggested that berberine may directly promote osteogenesis. Further in-vitro studies demonstrated that berberine statistically significantly promoted the osteogenic differentiation of BMSCs at concentrations of 1 to 10 μM. In the research on the mechanisms, we found that both total β-catenin and nuclear β-catenin accumulation were statistically significantly increased by berberine. And the transcriptional activity of β-catenin/TCF was about 2 folds higher than the control group. Furthermore, Wnt signaling specific inhibitor DKK-1 blocked the above effects of berberine. These demonstrated that Wnt/β-catenin signalling pathway was involved in the osteogenic differentiation induced by berberine. The antibacterial actions in combination with the promotion role in osteogenic ...
Source: European Journal of Pharmacology - Category: Drugs & Pharmacology Authors: Tags: Eur J Pharmacol Source Type: research