Hemoglobin S Induces Exposure of Red Blood Cell Membrane Skeleton Microdomains Bearing Mannose That Stimulate Phagocytosis By Macrophages: A Molecular Basis for Hemolysis in Sickle Cell Disease but Protection Against Plasmodium Falciparum malaria

Heterozygosity for Hemoglobin (Hb) S, sickle cell trait (SCT), affects over 40 million people and confers resistance to severe infection by Plasmodium falciparum. Homozygosity for HbS, or compound heterozygosity with certain other alleles of Hb, affects over 4 million individuals and causes sickle cell disease (SCD). Hemolytic anaemia is a prominent feature of SCD and is mainly extravascular, mediated by hepatic and splenic macrophages. No ligands for this process have been identified. As many macrophage phagocytic receptors recognise carbohydrates, we surveyed surface glycan expression by sickle cells using a panel of 8 lectins and flow cytometry. Most glycans were similar to those of healthy red blood cells (RBC), except much higher expression of terminal mannose.We investigated the structural basis for these residues using glycomic mass spectroscopy, which showed them to be N-linked high (Man5-9GlcNAc2) mannoses, a surprising conclusion as these are usually intermediates in the formation of complex glycans and not displayed on cell surfaces. High resolution microscopy revealed the mannose residues to be carried in discrete microdomains on the surfaces of sickle cells. These structures were absent on the surfaces of healthy RBC, instead being present in the membrane skeleton under the cell surface. Lectin blots and immunoprecipitation showed the mannoses to co-migrate predominantly with spectrin.We showed these mannose-bearing structures were able to stimulate phagocytosis ...
Source: Blood - Category: Hematology Authors: Tags: 113. Hemoglobinopathies, Excluding Thalassemia-Basic and Translational Science: Poster III Source Type: research