Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells

In this study, we successfully incorporated a hydrophobic drug, bortezomib (Bor), into folic acid (FA)-conjugated Cs/Chs self-assembled NPs (Bor/Cs/Chs-FA) for colorectal cancer therapy. The particle size and polydispersity index of Bor/Cs/Chs-FA were ∼196.5 ± 1.2 nm and ∼0.21 ± 0.5, respectively. A pH-dependent release profile was observed, facilitating cancer cell-targeted drug release under an acidic tumor microenvironment. Moreover, in vitro data revealed enhanced cellular uptake and apoptosis in folate receptor-expressing colorectal cancer cells (HCT-116 and HT-29) as compared to that in lung cancer cells (A549), which do not express folate receptors. Furthermore, intravenous administration of Bor/Cs/Chs-FA in a HCT-116 bearing xenograft mouse model showed that the NPs were a safe and effective drug delivery system. The results suggest that folate-targeted nanoparticle can be effectively applied for efficient chemotherapy of colorectal cancer.Graphical Abstract
Source: Asian Journal of Pharmaceutical Sciences - Category: Drugs & Pharmacology Source Type: research

Related Links:

In this study, T cells deficient in TRAF6 display enhanced T cell activation, CD28-indpendent stimulation and resistance to Treg cell-mediated suppression (176). Although TLR signaling can promote T cell resistance to Treg cells, the precise molecular mechanism remains yet to be elucidated. It is worth noting that TLR stimulation of T cells increases cytokine production (173, 177), thus future studies should delineate the effect of TLR-MyD88 signaling vs. subsequently induced cytokines in generating resistance to Treg cells. Lastly, it is also crucial to evaluate the effect of TLR signaling on regulatory T cells which also...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Conclusions In the new era of targeted therapy, treatment options are increasingly based on the precise molecular and genetic profiling of tumor cells (58). Currently, the main challenge for further novel drug development in targeted therapy is the clarification of specific molecular mechanisms underlying the varied forms of tumors in clinic. It has been acknowledged that cancer is caused by a set of driver mutations. In this regard, it is of great significance to: (1) identify and validate key mutant genes and proteins in cancers as new targets; (2) identify patients most likely and unlikely to benefit from certain targe...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
This study was supported by the Shanghai Sailing Program [grant number 17YF1425200, 2017]; Chinese National Natural Science Funding [grant number 81702249, 2017]; Science and Technology Commission of Shanghai Municipality [grant number 17511103403, 2017]; The funder has no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. Conflict of Interest Statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Acknowledgments We acknowledge the ex...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Discussion Suppressor of cytokine signaling 1 is an essential molecule for maintaining immune homeostasis and subverting inflammation. Disorders arising from excess inflammation or SOCS1 deficiency can be potentially treated with SOCS1 mimetics (Ahmed et al., 2015). While SOCS1 has promising potential in many disorders, it should be noted that new targets and actions of SOCS1 are still being discovered and not all the effects of this protein are beneficial in autoimmune diseases and cancer. For instance, SOCS1 degrades IRS1 and IRS2, required for insulin signaling, via the SOCS Box domain, thus, limiting its potential in ...
Source: Frontiers in Pharmacology - Category: Drugs & Pharmacology Source Type: research
Personalized Dendritic Cell Vaccines—Recent Breakthroughs and Encouraging Clinical Results Beatris Mastelic-Gavillet, Klara Balint, Caroline Boudousquie, Philippe O. Gannon and Lana E. Kandalaft* Department of Oncology, Center for Experimental Therapeutics, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland With the advent of combined immunotherapies, personalized dendritic cell (DC)-based vaccination could integrate the current standard of care for the treatment of a large variety of tumors. Due to their proficiency at antigen presentation, DC are key coordinators of the innate...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
Hepatoma-Derived Growth Factor and DDX5 Promote Carcinogenesis and Progression of Endometrial Cancer by Activating β-Catenin Chunhua Liu1†, Lijing Wang1†, Qingping Jiang2†, Junyi Zhang3†, Litong Zhu1, Li Lin1, Huiping Jiang1, Dan Lin1, Yanyi Xiao1, Weiyi Fang1,3 and Suiqun Guo1* 1Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China 2Department of Pathology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China 3Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guang...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Conclusion In this article, we use the amphiphilic copolymer DSPE-SS-mPEG, which is connected by disulfide bonds. Afterward, the magnetic Fe3O4 nanoparticles and the hydrophobic drug are made by the self-assembly of the amphiphilic copolymer. DOX is encapsulated in the amphiphilic copolymer to form a magnetic nano drug controlled release system which is sensitive and responds to a reducing environment. This controlled release system can dissociate the disulfide bonds in the presence of dithiothreitol, thereby triggering the release system to disintegrate and expel the drug. When the DOX-loaded nanocarrier is transported ...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Abstract: Genomic analyses in oncologic care allow for the development of more precise clinical laboratory tests that will be critical for personalized pharmacotherapy. Traditional biopsy-based approaches are limited by the availability of sequential tissue specimens to detect resistance. Blood-based genomic profiling (“liquid biopsy”) is useful for longitudinal monitoring of tumor genomes and can complement biopsies. Tumor-associated mutations can be identified in cell-free tumor DNA (ctDNA) from patient blood samples and used for monitoring disease activity. The US Food and Drug Administration approved a li...
Source: Therapeutic Drug Monitoring - Category: Drugs & Pharmacology Tags: Review Articles: Focus on Pharmacodynamic Drug Monitoring Source Type: research
In this study, we show that calorie restriction is protective against age-related increases in senescence and microglia activation and pro-inflammatory cytokine expression in an animal model of aging. Further, these protective effects mitigated age-related decline in neuroblast and neuronal production, and enhanced olfactory memory performance, a behavioral index of neurogenesis in the SVZ. Our results support the concept that calorie restriction might be an effective anti-aging intervention in the context of healthy brain aging. Greater Modest Activity in Late Life Correlates with Lower Incidence of Dementia ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Work by theNanotechnology Characterization Laboratory (NCL), a joint initiative of NCI, NIST, and the FDA, has led to the discovery of a novel combination chemotherapy. This combination is shown to have synergistic effects on cytotoxicity to cancer cells in vitro, and to cause a substantial decrease in tumor growth in preclinical tumor models in vivo. Combination therapy using these agents may enhance the response rate of different cancers to these drugs and may significantly reduce side effects by permitting a lower therapeutic dose to be administered. SAIC Frederick'' s Nanotechnology Characterization   Laboratory&n...
Source: NIH OTT Licensing Opportunities - Category: Research Authors: Source Type: research
More News: Cancer | Cancer & Oncology | Cancer Therapy | Chemotherapy | Colorectal Cancer | Drugs & Pharmacology | Folic Acid | Lung Cancer | Nanotechnology | Study | Velcade | Vitamin B9