Genome-wide Analysis of Alternative Splicing in An Inbred Cabbage (Brassica oleracea L.) Line 'HO' in Response to Heat Stress.

Conclusion: We identified 1,864 genes, including Heat shock transcription factor (Hsf) and heat shock protein (Hsp) genes, that exhibited >4-fold changes in expression upon exposure to HS. The enriched Gene Ontology (GO) terms of the 1,864 genes included 'response to stress/abiotic stimulus/chemical stimulus', among, which the genes most highly induced by HS encode small Hsps and Hsf proteins. The heat-induced genes also showed an increased number of AS events under HS conditions. In addi-tion, the distribution of AS types was altered under HS conditions, as the level of Intron Retention (IR) decreased, whereas other types of AS increased, under these conditions. Severe HS-induced AS was al-so observed in Hsfs and Hsps, which play crucial roles in regulating heat tolerance. Our results support the notion that AS of HS-related genes, such as HsfA2 and HsfB2a, are important for heat stress adapta-tion in cabbage. PMID: 29491729 [PubMed]
Source: Current Genomics - Category: Genetics & Stem Cells Tags: Curr Genomics Source Type: research