Log in to search using one of your social media accounts:

 

Astrocytes as targets for drug discovery.

Astrocytes as targets for drug discovery. Drug Discov Today. 2018 Jan 06;: Authors: Gorshkov K, Aguisanda F, Thorne N, Zheng W Abstract Recent studies have illuminated the crucial role of astrocytes in maintaining proper neuronal health and function. Abnormalities in astrocytic functions have now been implicated in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Historically, drug development programs for neurodegenerative diseases generally target only neurons, overlooking the contributions of astrocytes. Therefore, targeting both disease neurons and astrocytes offers a new approach for drug development for the treatment of neurological diseases. Looking forward, the co-culturing of human neurons with astrocytes could be the next evolutionary step in drug discovery for neurodegenerative diseases. PMID: 29317338 [PubMed - as supplied by publisher]
Source: Drug Discovery Today - Category: Drugs & Pharmacology Authors: Tags: Drug Discov Today Source Type: research

Related Links:

"Understanding the Role of Hypoxia inducible factor during neurodegeneration for new therapeutics opportunities". Curr Neuropharmacol. 2018 Jan 10;: Authors: Merelli A, Rodriguez JCG, Folch J, Regueiro MR, Camins A, Alberto L Abstract Neurodegeneration (NDG) is linked with the progressive loss of neural function with intellectual and/or motor impairment. Several diseases affecting older individuals, including Alzheimer's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Parkinson's disease, stroke, Multiple Sclerosis and many others, are the most relevant disorders associated wit...
Source: Current Neuropharmacology - Category: Drugs & Pharmacology Authors: Tags: Curr Neuropharmacol Source Type: research
Abstract Extracellular vesicles (EVs), based on their origin or size, can be classified as apoptotic bodies, microvesicles (MVs)/microparticles (MPs), and exosomes. EVs are one of the new emerging modes of communication between cells that are providing new insights into the pathophysiology of several diseases. EVs released from activated or apoptotic cells contain specific proteins (signaling molecules, receptors, integrins, cytokines), bioactive lipids, nucleic acids (mRNA, miRNA, small non coding RNAs, DNA) from their progenitor cells. In the brain, EVs contribute to intercellular communication through their bas...
Source: Biochemical Pharmacology - Category: Drugs & Pharmacology Authors: Tags: Biochem Pharmacol Source Type: research
Authors: Matilla-Dueñas A, Corral-Juan M, Rodríguez-Palmero Seuma A, Vilas D, Ispierto L, Morais S, Sequeiros J, Alonso I, Volpini V, Serrano-Munuera C, Pintos-Morell G, Álvarez R, Sánchez I Abstract More than 600 human disorders afflict the nervous system. Of these, neurodegenerative diseases are usually characterised by onset in late adulthood, progressive clinical course, and neuronal loss with regional specificity in the central nervous system. They include Alzheimer's disease and other less frequent dementias, brain cancer, degenerative nerve diseases, encephalitis, epilepsy, geneti...
Source: Advances in Experimental Medicine and Biology - Category: Research Tags: Adv Exp Med Biol Source Type: research
Abstract Formation of toxic protein aggregates is a common feature and mainly contributes to the pathogenesis of neurodegenerative diseases (NDDs), which include amyotrophic lateral sclerosis (ALS), Alzheimer's, Parkinson's, Huntington's, and prion diseases. The transglutaminase 2 (TG2) gene encodes a multifunctional enzyme, displaying four types of activity, such as transamidation, GTPase, protein disulfide isomerase, and protein kinase activities. Many studies demonstrated that the calcium-dependent transamidation activity of TG2 affected the formation of insoluble and toxic amyloid aggregates that mainly consis...
Source: BMB Reports - Category: Biochemistry Authors: Tags: BMB Rep Source Type: research
This study cohort is a healthy subset of the EpiPath cohort, excluding all participants with acute or chronic diseases. With a mediation analysis we examined whether CMV titers may account for immunosenescence observed in ELA. In this study, we have shown that ELA is associated with higher levels of T cell senescence in healthy participants. Not only did we find a higher number of senescent cells (CD57+), these cells also expressed higher levels of CD57, a cell surface marker for senescence, and were more cytotoxic in ELA compared to controls. Control participants with high CMV titers showed a higher number of senes...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Hormesis is a near ubiquitous phenomenon in living organisms and their component parts: a little damage, a short or mild exposure to damaging circumstances, can result in a net benefit to health and longevity. Cells respond to damage or stress by increasing their self-repair efforts for some period of time, maintaining their function more effectively than would otherwise have been the case. At the high level, the outcomes of hormesis have been measured for a wide variety of stresses and systems, from individual cells to entire organisms. At the low level of specific biochemical processes and interaction of components insid...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs
Owen ProudfootNeurology India 2017 65(6):1241-1247The collective evidence to date suggests that environmental exposure to excessive amounts of manganese (Mn) can cause a neurodegenerative condition known as manganism. It is now also relatively clear that Mn is involved in the pathogenesis of Alzheimer's disease and at least some prion diseases. The potential involvement of Mn in a panel of other neurodegenerative conditions including Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Batten disease has been suggested and investigated, but the results to date are somewhat inconclusive....
Source: Neurology India - Category: Neurology Authors: Source Type: research
Abstract The innate immune system plays diverse roles in health and disease. It represents the first line of defense against infection and is involved in tissue repair, wound healing, and clearance of apoptotic cells and cellular debris. Excessive or nonresolving innate immune activation can lead to systemic or local inflammatory complications and cause or contribute to the development of inflammatory diseases. In the brain, microglia represent the key innate immune cells, which are involved in brain development, brain maturation, and homeostasis. Impaired microglial function, either through aberrant activation or...
Source: Annual Review of Medicine - Category: General Medicine Authors: Tags: Annu Rev Med Source Type: research
Publication date: October 2017 Source:Neurochemistry International, Volume 109 Author(s): Illari Salvatori, Cristiana Valle, Alberto Ferri, Maria Teresa Carrì The NAD+-dependent deacetylase protein Sirtuin 3 (SIRT3) is emerging among the factors playing a key role in the regulation of mitochondrial function and in the prevention of oxidative stress. This deacetylase activates protein substrates directly involved in the production and detoxification of ROS, such as superoxide dismutase 2 and catalase, but also enzymes in the lipid beta-oxidation pathway. In this paper we review existing evidence on the role of SIRT3...
Source: Neurochemistry International - Category: Neuroscience Source Type: research
Abstract Caffeine is one of the most consumed stimulant of the central nervous system. Similar to those of other stimulants, its effects are to improve brain activity and stimulate cognition learning and memory. Caffeine affects the brain by acting mainly as a non-selective blocker of the adenosine receptors (A1, A2A, A2B, and A3). The purpose of this review article is to provide an overview on the neurobiochemical impact of caffeine, focusing on the ability of the drug to effectively counteract several neurodegenerative disorders such as Alzheimer's, Parkinson's, Huntington's diseases, Multiple sclerosis and Amyo...
Source: Current Medicinal Chemistry - Category: Chemistry Authors: Tags: Curr Med Chem Source Type: research
More News: ALS | Alzheimer's | Brain | Drugs & Pharmacology | Huntington's Disease | Neurology | Parkinson's Disease | Study