Low-density lipoprotein-coupled N-succinyl chitosan nanoparticles co-delivering siRNA and doxorubicin for hepatocyte-targeted therapy.

In this study, low-density lipoprotein (LDL) was isolated from human plasma and loaded with cholesterol-conjugated siRNA to silence the multidrug resistant gene of tumors. Chol-siRNA/LDL-coupled N-succinyl chitosan nanoparticles loaded with doxorubicin (Dox-siRNA/LDL-SCS-NPs) were then prepared and characterised. The Dox-siRNA/LDL-SCS-NPs had average particle size of 206.4 ± 9.2 nm, entrapment efficiency of 71.06% ± 1.42%, and drug-loading amount of 12.35% ± 0.87%. In vitro antitumor activity revealed that cell growth was significantly inhibited. The accumulation of Dox by fluorescence microscopy and flow cytometry showed that LDL-coupled nanoparticles were more easily taken up than Dox-SCS-NPs. Results of confocal microscopy and reverse transcription-PCR revealed the highly efficient uptake of siRNA and the decrease in mdr1 mRNA expression. LDL-coupled nanoparticles protected siRNA from macrophage phagocytosis by dynamic observation using live cell station. In vivo tumor-targeting suggested that Cy7-labelled Dox-LDL-SCS-NPs were markedly accumulated in an analyzed in situ liver tumor model. Results indicated that LDL-SCS-NPs were effective tumor-targeting vectors and that the preparation form may provide a new strategy for co-delivering siRNA and antitumor drugs. PMID: 24768047 [PubMed - as supplied by publisher]
Source: Biomaterials - Category: Materials Science Authors: Tags: Biomaterials Source Type: research