Protective role of hydrogen sulfide against diabetic cardiomyopathy by inhibiting pyroptosis and myocardial fibrosis

In this study, a diabetic rat model was developed using intraperitoneal injections of streptozotocin (STZ), and hyperglycemia-stimulated cardiomyocytes were employed to replicate the cellular environment of DCM. There was a marked decline in the expression of cystathionine γ-lyase (CSE), a catalyst for H2S synthesis, in both the STZ-induced diabetic rats and hyperglycemia-stimulated cardiomyocytes. Experimental results in vivo indicated that H2S ameliorates MF and enhances cardiac functionality in diabetic rats by mitigating cardiomyocyte pyroptosis. In vitro assessments highlighted the induction of cardiomyocyte pyroptosis and the subsequent decline in cell viability under hyperglycemic conditions. However, the administration of sodium hydrosulfide (NaHS) curtailed cardiomyocyte pyroptosis and augmented cell viability. In contrast, propargylglycine (PAG), a CSE inhibitor, reversed the effects rendered by NaHS administration. Additional exploration indicated that the mitigating effect of H2S on cardiomyocyte pyroptosis is modulated through the ROS/NLRP3 pathway. In essence, our findings corroborate the potential of H2S in alleviating MF in diabetic subjects. This therapeutic effect is likely attributable to the regulation of cardiomyocyte pyroptosis via the ROS/NLRP3 pathway. This discovery furnishes a prospective therapeutic target for the amelioration and management of MF associated with diabetes.PMID:38657502 | DOI:10.1016/j.biopha.2024.116613
Source: Biomedicine and pharmacotherapy = Biomedecine and pharmacotherapie - Category: Drugs & Pharmacology Authors: Source Type: research