Therapeutic Targeting of Thioredoxin Reductase 1 Causes Ferroptosis while Potentiating Anti-PD-1 Efficacy in Head and Neck Cancer

This study is the first to highlight TXNRD1 as a crucial factor contributing to resistance to anti-PD-1 treatment in HNSCC. In this study, we identified targetable regulators of resistance to immunotherapy-induced ferroptosis in HNSCC. We observed a link of thioredoxin reductase 1 (TXNRD1) with tumoral PD-L1 expression and ferroptosis suppression in HNSCC. Moreover, HNSCC tumors with aberrant TXNRD1 expression exhibited a lack of PD-1 response, NRF2 overexpression, and PD-L1 upregulation. TXNRD1 inhibition promoted ferroptosis in HNSCC cells with NRF2 activation and in organoid tumors derived from patients lacking a PD-1 response. Mechanistically, TXNRD1 regulated PD-L1 transcription and maintained the redox balance by binding to ribonucleotide reductase regulatory subunit M2 (RRM2). TXNRD1 expression disruption sensitized HNSCC cells to anti-PD-1-mediated Jurkat T-cell activation, promoting tumor killing through ferroptosis. Moreover, TXNRD1 inhibition through auranofin cotreatment synergized with anti-PD-1 therapy to potentiate immunotherapy-mediated ferroptosis by mediating CD8+ T-cell infiltration and downregulating PD-L1 expression. Our findings indicate that targeting TXNRD1 is a promising therapeutic strategy for improving immunotherapy outcomes in patients with HNSCC.PMID:38636790 | DOI:10.1016/j.cbi.2024.111004
Source: Chemico-Biological Interactions - Category: Molecular Biology Authors: Source Type: research