Gut microbiota dysbiosis contributes to depression-like behaviors via hippocampal NLRP3-mediated neuroinflammation in a postpartum depression mouse model

Brain Behav Immun. 2024 Apr 8;119:220-235. doi: 10.1016/j.bbi.2024.04.002. Online ahead of print.ABSTRACTPostpartum depression (PPD) is a severe mental disorder that affects approximately 10---20% of women after childbirth. The precise mechanism underlying PPD pathogenesis remains elusive, thus limiting the development of therapeutics. Gut microbiota dysbiosis is considered to contribute to major depressive disorder. However, the associations between gut microbiota and PPD remain unanswered. Here, we established a mouse PPD model by sudden ovarian steroid withdrawal after hormone-simulated pseudopregnancy-human (HSP-H) in ovariectomy (OVX) mouse. Ovarian hormone withdrawal induced depression-like and anxiety-like behaviors and an altered gut microbiota composition. Fecal microbiota transplantation (FMT) from PPD mice to antibiotic cocktail-treated mice induced depression-like and anxiety-like behaviors and neuropathological changes in the hippocampus of the recipient mice. FMT from healthy mice to PPD mice attenuated the depression-like and anxiety-like behaviors as well as the inflammation mediated by the NOD-like receptor protein (NLRP)-3/caspase-1 signaling pathway both in the gut and the hippocampus, increased fecal short-chain fatty acids (SCFAs) levels and alleviated gut dysbiosis with increased SCFA-producing bacteria and reduced Akkermansia in the PPD mice. Also, downregulation of NLRP3 in the hippocampus mitigated depression-like behaviors in PPD mice and overexpress...
Source: Brain, Behavior, and Immunity - Category: Neurology Authors: Source Type: research