Mapping ACE2 and TMPRSS2 co-expression in human brain tissue: implications for SARS-CoV-2 neurological manifestations

AbstractThe Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily targets respiratory cells, but emerging evidence shows neurological involvement, with the virus directly affecting neurons and glia. SARS-CoV-2 entry into a target cell requires co-expression of ACE2 (Angiotensin-converting enzyme-2) and TMPRSS2 (Trans membrane serine protease-2). Relevant literature on human neurological tissue is sparse and mostly focused on the olfactory areas. This prompted our study to map brain-wide expression of these entry proteins and assess age-related changes. The normal brain tissue samples were collected from cerebral cortex, hippocampus, basal ganglia, thalamus, hypothalamus, brain stem and cerebellum; and were divided into two groups - up to 40 years (nā€‰=ā€‰10) and above 40 years (nā€‰=ā€‰10). ACE2 and TMPRSS2 gene expression analysis was done using qRT-PCR and protein co-expression was seen by immunofluorescence. The ACE2 and TMPRSS2 gene expression was observed to be highest in hypothalamus and thalamus regions, respectively. Immunoreactivity for both ACE-2 and TMPRSS2 was o bserved in all examined brain regions, confirming the presence of these viral entry receptors. Co-localisation was maximum in hypothalamus. Our study did not find any trend related to different age groups. The expression of both these viral entry receptors suggests that normal human brain is suscept ibility to SARS-CoV-2, perhaps which could ...
Source: Journal of NeuroVirology - Category: Neurology Source Type: research