Mutations in the F protein of the live-attenuated respiratory syncytial virus vaccine candidate ΔNS2/Δ1313/I1314L increase the stability of infectivity and content of prefusion F protein

by Judith Alamares-Sapuay, Michael Kishko, Charles Lai, Mark Parrington, Simon Delagrave, Richard Herbert, Ashley Castens, Joanna Swerczek, Cindy Luongo, Lijuan Yang, Peter L. Collins, Ursula J. Buchholz, Linong Zhang Respiratory syncytial virus (RSV) is the leading viral cause of bronchiolitis and pneumonia in infants and toddlers, but there currently is no licensed pediatric vaccine. A leading vaccine candidate that has been evaluated for intranasal immunization in a recently completed phase 1/2 clinical tria l is an attenuated version of RSV strain A2 called RSV/ΔNS2/Δ1313/I1314L (hereafter called ΔNS2). ΔNS2 is attenuated by deletion of the interferon antagonist NS2 gene and introduction into the L polymerase protein gene of a codon deletion (Δ1313) that confers temperature-sensitivity and is stab ilized by a missense mutation (I1314L). Previously, introduction of four amino acid changes derived from a second RSV strain “line 19” (I79M, K191R, T357K, N371Y) into the F protein of strain A2 increased the stability of infectivity and the proportion of F protein in the highly immunogenic pre- fusion (pre-F) conformation. In the present study, these four “line 19” assignments were introduced into the ΔNS2 candidate, creating ΔNS2-L19F-4M. Duringin vitro growth in Vero cells, ΔNS2-L19F-4M had growth kinetics and peak titer similar to the ΔNS2 parent. ΔNS2-L19F-4M exhibited an enhanced proportion of pre-F protein, with a ratio of pre-F/total F that was 4.5- to...
Source: PLoS One - Category: Biomedical Science Authors: Source Type: research