Interesting Insight into the Relationship Between TP53, Telomerase, and Telomere Length

This study provides some insight into how these relationships play out in practice by sabotaging telomerase and p53, and observing the results. Telomerase activity is restricted in humans and telomere attrition occurs in several tissues accompanying natural aging. Critically short telomeres trigger DNA damage responses and activate p53 which leads to apoptosis or replicative senescence. These processes reduce cell proliferation and disrupt tissue homeostasis, thus contributing to systemic aging. Similarly, zebrafish have restricted telomerase expression, and telomeres shorten to critical length during their lifespan. Telomerase-deficient zebrafish (tert -/-) is a model of premature aging that anticipates aging phenotypes due to early telomere shortening. tert -/- zebrafish have impaired cell proliferation, accumulation of DNA damage markers and p53 response. These cellular defects lead to disruption of tissue homeostasis, resulting in premature infertility, gastrointestinal atrophy, sarcopenia, and kyphosis. Such consequences contribute to its premature death. Here we reveal a genetic interdependence between tp53 and telomerase function. Mutation of tp53 abrogates premature aging of tert -/- zebrafish, prolonging male fertility and lifespan. However, it does not fully rescue healthspan. tp53mut tert -/- zebrafish retain high levels of inflammation and increased spontaneous cancer incidence. Conversely, loss of telomerase prolongs the lifes...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs