Screening for Differentially Expressed Memory Genes on a Diabetes Model Induced by High-Sugar Diet in Drosophila melanogaster: Potential Markers for Memory Deficits

AbstractType 2 diabetes mellitus (T2DM) has been shown to affect a series of cognitive processes including memory, increasing the risk for dementia, particularly Alzheimer ’s disease (AD). Although increasing evidence has supported that both diseases share common features, the pathophysiological mechanisms connecting these two disorders remain to be fully elucidated. Herein, we usedDrosophila melanogaster fed on a high-sugar diet (HSD) to mimic T2DM, and investigate its effects on memory as well as identify potential molecular players associated with the memory deficits induced by HSD. Flies hatched from and reared on HSD for 7  days had a substantial decrease in short-term memory (STM). The screening for memory-related genes using transcriptome data revealed that HSD altered the expression of 33% of memory genes in relation to the control. Among the differentially expressed genes (DEGs) with a fold change (FC) higher tha n two, we found five genes, related to synapse and memory trace formation, that could be considered strong candidates to underlie the STM deficits in HSD flies:Abl tyrosine kinase (Abl),bruchpilot (Brp),minibrain (Mnb),shaker (Sh), andgilgamesh (Gish). We also analyzed genes from the dopamine system, one of the most relevant signaling pathways for olfactory memory. Interestingly, the flies fed on HSD presented a decreased expression of theTyrosine hydroxylase (Ple) andDopa decarboxylase (Ddc) genes, signals of a possible dopamine deficiency. In this work,...
Source: Molecular Neurobiology - Category: Neurology Source Type: research