Restriction of RNA Polymerase I Activity Extends Life in Nematode Worms

RNA Polymerase I (Pol I) is prominent in the regulatory systems managing the nutrient-driven tradeoff between growth and longevity. It is responsible for producing a sizable fraction of RNA, reading from gene sequences and assembling corresponding RNA molecules. As such, it is responsible for initiating some of the most energetically expensive processes in the cell, including translation of messenger RNA into proteins. Suppression of the production of proteins is a consequence of low calorie intake, an intervention known to slow aging, and researchers have shown that interfering in RNA synthesis can also extend life in short-lived species. Here, researchers dig further into the connection between Pol I activity and aging, showing that reduced Pol I activity extends life in nematode worms. The insulin/insulin-like growth factor signaling (IIS) and the mechanistic target of rapamycin (mTOR) promote anabolic reactions upon nutrient availability, whereas in a fasted state the adenosine monophosphate-activated protein kinase (AMPK) and the sirtuin family of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases trigger catabolic processes. Shifting the balance from IIS and mTOR signaling towards AMPK and sirtuin activity by diverse interventions promotes longevity in short-lived species. The IIS, mTOR, AMPK, and sirtuin pathways impinge on Pol I-mediated transcription of ribosomal RNA (rRNA) genes (rDNA) into pre-rRNA, a precursor transcript compri...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs