SIRT6 activates PPAR α to improve doxorubicin-induced myocardial cell aging and damage

Chem Biol Interact. 2024 Feb 21:110920. doi: 10.1016/j.cbi.2024.110920. Online ahead of print.ABSTRACTThe Sirtuins family, formally known as the Silent Information Regulator Factors, constitutes a highly conserved group of histone deacetylases. Recent studies have illuminated SIRT6's role in doxorubicin (DOX)-induced oxidative stress and apoptosis within myocardial cells. Nevertheless, the extent of SIRT6's impact on DOX-triggered myocardial cell aging and damage remains uncertain, with the associated mechanisms yet to be fully understood. In our research, we examined the influence of SIRT6 on DOX-induced cardiomyocyte senescence using β-galactosidase and γ-H2AX staining. Additionally, we gauged the mRNA expression of senescence-associated genes, namely p16, p21, and p53, through Real-time PCR. Employing ELISA assay kits, MDA, and total SOD activity assay kits, we measured inflammatory factors TNF-α, IL-6, and IL-1β, alongside oxidative stress-related indicators. The results unequivocally indicated that SIRT6 overexpression robustly inhibited DOX-induced cardiomyocyte senescence. Furthermore, we established that SIRT6 overexpression suppressed the inflammatory response and oxidative stress induced by DOX in cardiomyocytes. Conversely, silencing SIRT6 exacerbated DOX-induced cardiomyocyte injury. Our investigations further unveiled that SIRT6 upregulated the expression of genes CD36, CPT1, LCAD, MCAD associated with fatty acid oxidation through its interaction with PPARα,...
Source: Chemico-Biological Interactions - Category: Molecular Biology Authors: Source Type: research