A new methodology to reveal potential nucleic acid modifications associated with the risk of endometrial cancer through dispersive solid-phase extraction coupled with UHPLC-QE-Orbitrap-MS/MS and HPLC-UV

In this study, a novel dispersive solid-phase extraction (DSPE) method based on chitosan-carbon nanotube-Al2O3 (CS-CNT-Al2O3) has been established for the analysis of 5-hydroxymethyluracil (5 mU), 5-methyl-2'-deoxycytidine (5-mdC), 5-hydroxymethyl-2'-deoxycytidine (5-hmdC), 5-formyl-2'-deoxycytidine (5-fdC), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in EC patient urine samples coupled with UHPLC-QE-Orbitrap-MS/MS and HPLC-UV. Firstly, the synthesis of the CS-CNT-Al2O3 nanocomposite was conducted by a sono-coprecipitation method and was characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and Fourier transform infrared (FTIR). Under the optimal extraction conditions of DSPE, we successfully quantified 5 mU, 5-mdC, 5-hmdC, 5-fdC, and 8-OHdG in urine samples from 37 EC patients and 39 healthy controls. The results showed that there were significant differences in the levels of 5-mdC, 5-hmdC, 5-fdC, and 8-OHdG in EC patients compared to the healthy control group. The receiver operator characteristic (ROC) curve analysis was carried out to evaluate the potential of 5-mdC, 5-hmdC, 5-fdC, and 8-OHdG to distinguish EC patients from healthy volunteers. The area under the curve (AUC) for 5-mdC, 5-hmdC, 5-fdC, and 8-OHdG was 0.7412, 0.667, 0.8438, and 0.7981, respectively. It indicated that 5-mdC, 5-hmdC, 5-fdC, and 8-OHdG had certain potential in distinguishing between EC patients and healthy volunteers and they could act as potential non-invasive b...
Source: Analytical and Bioanalytical Chemistry - Category: Chemistry Authors: Source Type: research