Identifying an AML Prognostic Model Using 10 Marker Genes from Single-Cell Transcriptome and Bulk Transcriptome Analysis

The objective of this study is to examine the involvement of the FANC core complex in BMF and ascertain nucleolar homeostasis-related genes by conducting transcriptome analysis on primary hematopoietic stem cells obtained from FA patients with FANCA and FANCC variants. In the present study, we analyzed scRNA-seq data obtained from both healthy donors and individuals diagnosed with FA in order to investigate the phenomenon of cell-cell communication. Through the implementation of trajectory analysis, the differentiation pathways of several progenitor cell types, such as HSC cells transitioning into LMPP, N, M, B-prog, and E cells, were elucidated. Moreover, by scrutinizing the inferred interactions, notable disparities in cell-cell communication were observed between FA patients and their healthy counterparts. Our analysis has unveiled heightened interactions involving TNFSF13B, MIF, IL16, and COL4A2 in patients with FA. Furthermore, we have developed a prognostic model for predicting the outcome of acute myeloid leukemia (AML) which has exhibited remarkable predictive precision, with an AUC exceeding 0.83 at the 3- and 5-year intervals following the baseline assessment. In summary, the prognostic model that has been developed provides a valuable instrument for forecasting outcomes of AML by utilizing the genes identified through both single-cell and bulk transcriptome analyses.PMID:38347290 | DOI:10.1007/s10528-024-10678-9
Source: Biochemical Genetics - Category: Genetics & Stem Cells Authors: Source Type: research