A biophysically comprehensive model of urothelial afferent neurons: implications for sensory signalling in urinary bladder

AbstractThe urothelium is the innermost layer of the bladder wall; it plays a pivotal role in bladder sensory transduction by responding to chemical and mechanical stimuli. The urothelium also acts as a physical barrier between urine and the outer layers of the bladder wall. There is intricate sensory communication between the layers of the bladder wall and the neurons that supply the bladder, which eventually translates into the regulation of mechanical activity. In response to natural stimuli, urothelial cells release substances such as ATP, nitric oxide (NO), substance P, acetylcholine (ACh), and adenosine. These act on adjacent urothelial cells, myofibroblasts, and urothelial afferent neurons (UAN), controlling the contractile activity of the bladder. There is rising evidence on the importance of urothelial sensory signalling, yet a comprehensive understanding of the functioning of the urothelium-afferent neurons and the factors that govern it remains elusive to date. Until now, the biophysical studies done on UAN have been unable to provide adequate information on the ion channel composition of the neuron, which is paramount to understanding the electrical functioning of the UAN and, by extension, afferent signalling. To this end, we have attempted to model UAN to decipher the ionic mechanisms underlying the excitability of the UAN. In contrast to previous models, our model was built and validated using morphological and biophysical properties consistent with experimenta...
Source: Journal of Computational Neuroscience - Category: Neuroscience Source Type: research