Harnessing the potential of bimetallic nanoparticles: Exploring a novel approach to address antimicrobial resistance

In this study, the promising potential of bimetallic nanoparticles (BMNPs) was investigated as a novel weapon against AMR. This research begins by elaborating on the gravity of the AMR problem, outlining its scope in terms of the effects on healthcare systems, and stressing the urgent need for novel solutions. Because of their unusual features and wide range of potential uses, bimetallic nanoparticles (BMNPs), which are tiny particles consisting of two different metal elements, have attracted a lot of interest in numerous fields. This review article provides a comprehensive analysis of the composition, structural characteristics, and several synthesis processes employed in the production of BMNPs. Additionally, it delves into the unique properties and synergistic effects that set BMNPs apart from other materials. This review also focuses on the various antimicrobial activities shown by bimetallic nanoparticles, such as the rupturing of microbial cell membranes, the production of reactive oxygen species (ROS), and the regulation of biofilm formation. An extensive review of in vitro studies confirms the remarkable antibacterial activity of BMNPs against a variety of pathogens and sheds light on the dose-response relationship. The efficacy and safety of BMNPs in practical applications are assessed in this study. It also delves into the synergistic effects of BMNPs with traditional antimicrobial drugs and their ability to overcome multidrug resistance, providing mechanistic insig...
Source: World Journal of Microbiology and Biotechnology - Category: Microbiology Source Type: research