Unlocking the secrets of soil microbes: How decades-long contamination and heavy metals accumulation from sewage water and industrial effluents shape soil biological health

Chemosphere. 2023 Sep 16:140193. doi: 10.1016/j.chemosphere.2023.140193. Online ahead of print.ABSTRACTHeavy metals contamination is posing severe threat to the soil health and environmental sustainability. Application of industrial and sewage waste as irrigation and growing urbanization and agricultural industry is the main reason for heavy metals pollution. Therefore, the present study was planned to assess the influence of different irrigation sources such as industrial effluents, sewage wastewater, tube well water, and canal water on the soil physio-chemical, soil biological, and enzymatic characteristics. Results showed that sewage waste and industrial effluents affect the soil pH, organic matter, total organic carbon, and cation exchange capacity. The highest total nickel (383.71 mg kg-1), lead (312.46 mg kg-1), cadmium (147.75 mg kg-1), and chromium (163.64 mg kg-1) were recorded with industrial effluents application. Whereas, industrial effluent greatly reduced the soil microbial biomass carbon (SMB-C), soil microbial biomass nitrogen (SMB-N), soil microbial biomass phosphorus (SMB-P), and soil microbial biomass sulphur (SMB-S) in the winter season at sowing time. Industrial effluent and sewage waste inhibited the soil enzymes activities. For instance, the minimum activity of amidase, urease, alkaline-phosphatase, β-glucosidase, arylsulphatase and dehydrogenase activity was noted with HMs contamination. The higher levels of metals accumulation was observed in vegetab...
Source: Chemosphere - Category: Chemistry Authors: Source Type: research