A Perfused In Vitro Human iPSC-Derived Blood-Brain Barrier Faithfully Mimics Transferrin Receptor-Mediated Transcytosis of Therapeutic Antibodies

Cell Mol Neurobiol. 2023 Sep 12. doi: 10.1007/s10571-023-01404-x. Online ahead of print.ABSTRACTDelivering biologics to elicit a therapeutic response in the central nervous system (CNS) remains challenging due to the presence of the blood-brain barrier (BBB). Receptor-mediated transcytosis is a strategy to improve brain exposure after systemic drug administration. The availability of a clinically relevant in vitro BBB model is crucial to investigate transcytosis pathways and to predict the penetration of biologics into the CNS. We created a perfused human in vitro BBB model made of induced pluripotent stem cells (iPSC)-derived brain microvascular endothelial cells (BMEC) for studying transferrin receptor-mediated transcytosis. iPSC-derived BMEC were seeded in the top channel of a three-lane microfluidic device (OrganoPlate®). After 2 days in culture, the established cell model exhibited relevant BBB features, including physiological transendothelial electrical resistance in a transwell setting (1500 Ω*cm2), reduced apparent permeability (Papp) to the fluorescence tracer Lucifer yellow (20-fold less than cell-free chips), expression of key BBB markers such as tight junctions proteins, transporters, receptors and functional P-gp efflux pump. Moreover, the model exhibited functional transferrin receptor-mediated uptake and transcytosis. To assess selective transferrin receptor-mediated transcytosis, a mixture of anti-human transferrin receptor (MEM-189) and control (sheep IgG ...
Source: Cellular and Molecular Neurobiology - Category: Cytology Authors: Source Type: research