Tmed10 deficiency results in impaired exocrine pancreatic differentiation in zebrafish larvae

Dev Biol. 2023 Aug 17:S0012-1606(23)00142-2. doi: 10.1016/j.ydbio.2023.08.003. Online ahead of print.ABSTRACTTransmembrane p24 trafficking protein 10 (TMED10) is a conserved vesicle trafficking protein. It is dysregulated in Alzheimer disease and plays a pivotal role in the pathogenesis of Alzheimer disease. In addition to the brain, TMED10 is highly expressed in the exocrine pancreas; however, its biological functions and underlying mechanisms remain largely unknown. We studied reduced Tmed10 in zebrafish embryos by morpholino oligonucleotide knockdown and CRISPR-Cas9 mutagenesis. Tmed10-deficient embryos showed extensive loss of acinar mass and impaired acinar differentiation. TMED10 has been reported to have an inhibitory effect on γ-secretase. As one of the substrates of γ-secretase, membrane-bound β-catenin was significantly reduced in Tmed10-deficient embryos. Increased γ-secretase activity in wild-type embryos resulted in a phenotype similar to that of tmed10 mutants. And the mutant phenotype could be rescued by treatment with the γ-secretase inhibitor, N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-s-phenylglycinet-butyl ester (DAPT). In addition, the reduced membrane-bound β-catenin was accompanied with up-regulated β-catenin target genes in Tmed10-deficient embryos. Overexpression of β-catenin signaling inhibitor Dickkopf-1 (DKK-1) could rescue the exocrine pancreas defects. Taken together, our study reveals that Tmed10 regulates exocrine pancreatic differentiatio...
Source: Developmental Biology - Category: Biology Authors: Source Type: research