Hutchinson-Gilford progeria patient-derived cardiomyocyte model of carrying LMNA gene variant c.1824 C   & gt;  T

AbstractCardiovascular diseases, atherosclerosis, and strokes are the most common causes of death in patients with Hutchinson-Gilford progeria syndrome (HGPS). The LMNA variant c.1824C  >  T accounts for ~ 90% of HGPS cases. The detailed molecular mechanisms of Lamin A in the heart remain elusive due to the lack of appropriate in vitro models. We hypothesize that HGPS patient’s induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMCs) will provide a model platform t o study the cardio-pathologic mechanisms associated with HGPS. To elucidate the effects of progerin in cardiomyocytes, we first obtained skin fibroblasts (SFs) from a de-identified HGPS patient (hPGP1, proband) and both parents from the Progeria Research Foundation. Through Sanger sequencing and res triction fragment length polymorphism, with the enzyme EciI, targeting Lamin A, we characterized hPGP1-SFs as heterozygous mutants for the LMNA variant c.1824 C >  T. Additionally, we performed LMNA exon 11 bisulfite sequencing to analyze the methylation status of the progeria cells. Furthermore, we reprogrammed the three SFs into iPSCs and differentiated them into iCMCs, which gained a beating on day 7. Through particle image velocimetry analysis, we found that hPGP1-iCMCs had an irregular contractile function and decreased cardiac-specific gene and protein expressions by qRT-PCR and Western blot. Our progeria-patient-derived iCMCs were found to be functionally and structurally defective ...
Source: Cell and Tissue Research - Category: Cytology Source Type: research