Antiviral susceptibility of clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) viruses isolated from birds and mammals in the United States, 2022

Antiviral Res. 2023 Jul 24:105679. doi: 10.1016/j.antiviral.2023.105679. Online ahead of print.ABSTRACTClade 2.3.4.4 b highly pathogenic avian influenza (HPAI) A (H5N1) viruses that are responsible for devastating outbreaks in birds and mammals pose a potential threat to public health. Here, we evaluated their susceptibility to influenza antivirals. Of 1015 sequences of HPAI A (H5N1) viruses collected in the United States during 2022, eight viruses (∼0.8%) had a molecular marker of drug resistance to an FDA-approved antiviral: three adamantane-resistant (M2-V27A), four oseltamivir-resistant (NA-H275Y), and one baloxavir-resistant (PA-I38T). Additionally, 31 viruses contained mutations that may reduce susceptibility to inhibitors of neuraminidase (NA) (n = 20) or cap-dependent endonuclease (CEN) (n = 11). A panel of 22 representative viruses was tested phenotypically. Overall, clade 2.3.4.4 b A (H5N1) viruses lacking recognized resistance mutations were susceptible to FDA-approved antivirals. Oseltamivir was least potent at inhibiting NA activity, while the investigational NA inhibitor AV5080 was most potent, including against NA mutants. A novel NA substitution T438N conferred 12-fold reduced inhibition by zanamivir, and in combination with the known marker N295S, synergistically affected susceptibility to all five NA inhibitors. In cell culture-based assays HINT and IRINA, the PA-I38T virus displayed 75- to 108-fold and 37- to 78-fold reduced susceptibility to CEN inhibito...
Source: Antiviral Research - Category: Virology Authors: Source Type: research