The beneficial effects of bare and CMC-supported α-FeOOH, Fe < sub > 3 < /sub > O < sub > 4 < /sub > , and α-Fe < sub > 2 < /sub > O < sub > 3 < /sub > nanoparticles on growth, nutrient content, and essential oil of summer savory (Satureja hortensis L.) under Cd, Pb and Zn stresses

Environ Sci Pollut Res Int. 2023 Jun 2. doi: 10.1007/s11356-023-28008-8. Online ahead of print.ABSTRACTThis research studies the impacts of iron oxide nanoparticles (FeONPs) on alleviating the toxic effects of cadmium (Cd), lead (Pb), and zinc (Zn) on summer savory (Satureja hortensis L.). Different types of soil additives, including bare and carboxymethylcellulose (CMC)-supported hematite (α-Fe2O3), goethite (α-FeOOH), and magnetite (Fe3O4), were applied at three rates (0, 0.25, and 0.5% w/w) to a Cd, Pb, and Zn-contaminated soil sample. The experimental results showed that the application of FeONPs increased plant height, dry weights of shoot and root, and yield and content of essential oil. Bare and CMC-supported FeONPs increased the content of K, P, and Fe in the aerial parts of summer savory. However, these soil additives reduced the contents of Cd, Pb, and Zn in plant tissues. CMC-supported FeONPs proved to be more efficient additives in diminishing the toxic effects of Cd, Pb, and Zn in summer savory compared to their bare forms. Bare and CMC-supported goethite NPs were able to restrict the uptake of Cd, Pb, and Zn by summer savory roots in the metal-contaminated soil. The application of CMC-supported goethite at an application dose of 0.5% (w/w) increased shoot dry weight, shoot concentrations of K, P, and Fe, and yield of essential oil by about 62.6, 76.6, 77.1, 210, and 230%, respectively. Conversely, they reduced shoot concentrations of Cd, Pb, and Zn by about 64...
Source: Environmental Science and Pollution Research International - Category: Environmental Health Authors: Source Type: research