Using green biosynthesized kaempferol-coated sliver nanoparticles to inhibit cancer cells growth: an in vitro study using hepatocellular carcinoma (HepG2)

AbstractThe ongoing loss of human life owing to various forms of cancer necessitates the development of a more effective/honorable therapeutic approach. Moreover, finding a novel green-synthesized anti-cancer therapy is vital because of the induced drug resistance against the commonly used drugs. Collecting the advantage of the nanometer size of nanoparticles with the biosafety of plant-based substances might potentiate the anticancer effect with minimal toxic effect. In the current study, we aimed to green-synthesize using kaempferol (flavonoid) as a coating the silver nanoparticles (AgNPs) and investigated their anti-cancer activity in hepatocellular carcinoma (HepG2) cell line. First of all, kaempferol-coated AgNPs characters were well-defined using Fourier transmission infrared (FTIR), X-ray diffraction (XRD), zetasizer, and transmission electron microscopy (TEM). The results showed their 200  nm size, spherical shape, less aggregation with high stability characteristics. Then, the cytotoxic effect of both 1/3 and 1/2 LC50 of AgNPs, and doxorubicin (DOX, anticancer drug) on HepG2 cells was evaluated by dimethylthiazolyltetrazolium bromide (MTT) assay and release of lactate dehydrogenase (LDH) leakage percent. Reactive oxygen species (ROS) and apoptotic markers were also analyzed, along with the migration and invasion of HepG2 cells were recorded. Our findings showed that kaempferol-coated AgNPs could induce cytotoxic effects and reduce the viability of HepG2 cells in a c...
Source: Cancer Nanotechnology - Category: Cancer & Oncology Source Type: research