Optogenetics and cell replacement in retinology : Regenerative ophthalmology-What we can do!

Ophthalmologe. 2022 May 10. doi: 10.1007/s00347-022-01631-5. Online ahead of print.ABSTRACTFor many degenerative retinal diseases that progressively lead to blindness, no treatment options are available so far. In recent years, several innovative therapies have been experimentally explored, which are promising because they are independent of the genetic cause of the degenerative disease. One of these is optogenetics, which involves light-sensitive proteins that selectively act as ion channels or ion pumps to control the potential of the treated cell. Thus, these cells can be stimulated or inhibited by light, quasi functionally remote controlled. In this way artificial photoreceptors are induced from the remaining cells, which has already been successfully employed in animal experiments. This type of treatment is already being tested on patients and leads to an improvement in vision, but so far only data from one patient are available. The use of optogenetics additionally requires special eyeglasses to adapt the light impulses in adequate strength and wavelength for the respective optogenes. Another exciting approach is cell replacement therapy of retinal pigment epithelium (RPE) and photoreceptor cells to exchange degenerated cell material. This appears to be very successful for RPE cells in clinical trials. Obtaining human photoreceptors from stem cells is technically possible, but very laborious. The integration of the transplanted photoreceptors into the host retinal tissu...
Source: Der Ophthalmologe - Category: Opthalmology Authors: Source Type: research