Chrysin protects cardiac H9c2 cells against H < sub > 2 < /sub > O < sub > 2 < /sub > -induced endoplasmic reticulum stress by up-regulating the Nrf2/PERK pathway

Mol Cell Biochem. 2022 Aug 9. doi: 10.1007/s11010-022-04531-z. Online ahead of print.ABSTRACTOxidative and endoplasmic reticulum (ER) stress-mediated cardiac apoptosis is an essential pathological process in cardiovascular diseases (CVDs). Chrysin (Chy) is a natural flavonoid that exerts several health benefits, particularly anti-oxidative and anti-apoptotic effects. However, its protective effect against CVDs and its mechanism of action at a molecular level remains unclear. Therefore, the present study aimed to investigate the interaction of ER stress response protein with Chy by computational analysis and molecular action in H2O2-induced oxidative and ER stress in cardiomyoblast cells. H9c2 cells were pre-treated with 50 μM of Chy for 24 h and exposed to H2O2 for 1 h. Explore the Chy-mediated Nrf2 signalling on ER stress reduction, H9c2 cell lines were transfected with Nrf2 siRNA for 48 h and further treated with Chy for 24 h and subjected to H2O2 for 1 h. Chy pre-treatment increased the Nrf2-regulated gene expression, reduced the ER stress signalling genes such as CHOP and GRP78, and increased the PERK and AFT6 expression compared to H2O2-treated cells. Chy preincubation down-regulated the expression of PI3K, NF-κB, and caspase-3. Fluorescence staining revealed that Chy reduced intracellular ROS generation, ER stress, apoptosis, and increased MMP. This beneficial effect of Chy was abolished when silencing Nrf2 in H9c2 cells. Overall, the present study confirmed that Chy ...
Source: Molecular and Cellular Biochemistry - Category: Biochemistry Authors: Source Type: research