Humans tamed the microbes behind cheese, soy, and more

The burst of flavor from summer’s first sweet corn and the proud stance of a show dog both testify to the power of domestication. But so does the microbial alchemy that turns milk into cheese, grain into bread, and soy into miso. Like the ancestors of the corn and the dog, the fungi and bacteria that drive these transformations were modified for human use. And their genomes have acquired many of the classic signatures of domestication, researchers reported in two talks this month at a meeting in Washington, D.C. Microbes can’t be “bred” in the normal sense, because unlike peas or pigs, individual microbes with desired traits can’t be chosen and mated. But humans can grow microbes and select variants that best serve our purposes. The studies show the process, repeated over thousands of years, has left genetic hallmarks similar to those in domesticated plants and animals: The microbes have lost genes, evolved into new species or strains, and become unable to thrive in the wild. The studies “are getting to the mechanisms” of how microbial domestication works, says Benjamin Wolfe, a microbiologist at Tufts University. By revealing which genes are key to microbes’ prized traits—and which can be lost—the work could help further improve the organisms that fashion much of our food and drink, “especially [with] increasing interest in fermented foods,” says microbial ecologist Ariane Peralta of East Carolina University. The yeasts used in makin...
Source: ScienceNOW - Category: Science Source Type: news