Filtered By:
Cancer: Brain Cancers
Vaccination: Vaccines

This page shows you your search results in order of date.

Order by Relevance | Date

Total 17 results found since Jan 2013.

Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery
Pharm Res. 2022 Sep 15. doi: 10.1007/s11095-022-03385-w. Online ahead of print.ABSTRACTNucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies in...
Source: Cell Research - September 15, 2022 Category: Cytology Authors: Ricarda Carolin Steffens Ernst Wagner Source Type: research

Directing the Way —Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery
AbstractNucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor in...
Source: Pharmaceutical Research - September 15, 2022 Category: Drugs & Pharmacology Source Type: research

Abstracts of Presentations at the Association of Clinical Scientists 143 < sup > rd < /sup > Meeting Louisville, KY May 11-14,2022
Conclusion: These assays are suitable for routine diagnostic. The UltraFast NextGenPCR is the fastest with average time (30mins), followed by Agilent (2 hrs) and MassArray (6hrs). Upon completion of this activity, participants should be able to examine, measure and compare results from different assays for SARS detection, evaluate and diagnose accurately, as well as being able to plan, organize and recommend a diagnostic procedure for diagnostic laboratory. Key words: SARS-CoV-2, RNA extraction, RT-PCR, limit of detection, quantification cycle, COVID-19, in vitro diagnostic tests, Agilent, Massarray, Ultrafast. [20] From t...
Source: Annals of Clinical and Laboratory Science - July 1, 2022 Category: Laboratory Medicine Source Type: research

Gene Therapy Leaves a Vicious Cycle
Reena Goswami1, Gayatri Subramanian2, Liliya Silayeva1, Isabelle Newkirk1, Deborah Doctor1, Karan Chawla2, Saurabh Chattopadhyay2, Dhyan Chandra3, Nageswararao Chilukuri1 and Venkaiah Betapudi1,4* 1Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States 2Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States 3Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States 4Department of Physiology and Biophysics, Case Western Reserve University, Clev...
Source: Frontiers in Oncology - April 23, 2019 Category: Cancer & Oncology Source Type: research

High Expression of DEPDC1 Promotes Malignant Phenotypes of Breast Cancer Cells and Predicts Poor Prognosis in Patients With Breast Cancer
In this study, the immunohistochemistry results demonstrated that DEPDC1 was high-expressed in breast cancer tissues compared with the paired adjacent normal breast tissues, and its tendency at protein level was consistent with mRNA level from TCGA data. Moreover, DEPDC1 mRNA level revealed the strongest association with poor prognosis and development in breast cancer. In vitro assays showed that DEPDC1 overexpression resulted in significant promotion of proliferation by regulating cell cycle in MCF-7 cells, whilst an opposite effect was found in the MDA-MB-231 cells with DEPDC1 deletion. Notably, further investigation ind...
Source: Frontiers in Oncology - April 11, 2019 Category: Cancer & Oncology Source Type: research