ZMIZ proteins: partners in transcriptional regulation and risk factors for human disease

AbstractCoregulator proteins interact with signal-dependent transcription factors to modify their transcriptional activity. ZMIZ1 and ZMIZ2 (zinc finger MIZ-type containing 1 and 2) are coregulators with nonredundant functions that share unique structural characteristics. Among other interacting domains, they possess a MIZ (Msx-interacting zinc finger) that relates them to members of the protein inhibitor of activated STAT (PIAS) family and provides them the capacity to function as SUMO E3 ligases. The ZMIZ proteins stimulate the activity of various signaling pathways, including the androgen receptor (AR), P53, SMAD3/4, WNT/ β-catenin, and NOTCH1 pathways, and interact with the BAF chromatin remodeling complex. Due to their molecular versatility, ZMIZ proteins have pleiotropic effects and thus are important for embryonic development and for human diseases. Both have been widely associated with cancer, and ZMIZ1 has bee n very frequently identified as a risk allele for several autoimmune conditions and other disorders. Moreover, mutations in the coding region of theZMIZ1 gene are responsible for a severe syndromic neurodevelopmental disability. Because the actions of coregulators are highly gene-specific, a better knowledge of the associations that exist between the function of the ZMIZ coregulators and human pathologies is expected to potentiate the use of ZMIZ1 and ZMIZ2 as new drug targets for diseases such as hormone-dependent cancers.
Source: Journal of Molecular Medicine - Category: Molecular Biology Source Type: research