lncRNA Nuclear Factor of Activated T Cells Knockdown Alleviates Hypoxia/Reoxygenation-induced Cardiomyocyte Apoptosis by Upregulating HIF-1α Expression

This study aimed to explore the function of lncRNA noncoding repressor of nuclear factor of activated T cells (NRON) in hypoxia/reoxygenation (H/R)-stimulated H9c2 cells. NRON expression in peripheral blood of AMI patients and H/R-stimulated H9c2 cells was measured by quantitative real-time polymerase chain reaction. H9c2 cells were transfected with si-NRON or cotransfected with si-NRON and si-hypoxia-inducible factor-1 alpha (HIF-1α). The viability and apoptosis of these cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and flow cytometer, respectively. In addition, HIF-1α, AKT/mTOR signal pathways and ERK1/2 were detected by western blot. NRON knockdown in the myocardial infarction mouse model was conducted through adeno-associated virus injection, and cardiac function was evaluated by motion-mode echocardiography. The results showed that NRON was highly expressed in peripheral blood of AMI patients and H/R-stimulated H9c2 cells. NRON knockdown promoted cell viability and inhibited cell apoptosis of H/R-stimulated H9c2 cells. Meanwhile, NRON knockdown also significantly attenuated heart damage and improved cardiac function in an AMI mouse model. Furthermore, compared with si-normal control, NRON knockdown increased the levels of HIF-1α, p-AKT, p-mTOR, and p-ERK1/2. HIF-1α knockdown reversed the effects of NRON knockdown in H/R-stimulated-H9c2 cells damage. Overall, our study revealed that NRON knockdown alleviated H/R-indu...
Source: Journal of Cardiovascular Pharmacology - Category: Cardiology Tags: Original Article Source Type: research