Exosomes derived from mesenchymal stem cells ameliorate renal fibrosis via delivery of miR-186-5p

In this study, we found that level of miR-186-5p was significantly downregulated in TGF-β1-stimulated NRK52E cells and the obstructed kidneys of UUO mice. In addition, miR-186-5p can be transf erred from MSCs to NRK52E cells via exosomes. MSCs-delivered miR-186-5p markedly reduced the accumulation of extracellular matrix (ECM) protein, and inhibited epithelial-to-mesenchymal transition (EMT) and apoptosis in TGF-β1-stimulated NRK52E cells. Moreover, exosomal miR-186-5p from MSCs attenuat ed kidney injury and fibrosis in a UUO mouse model via inhibition of the ECM protein accumulation and EMT process. Meanwhile, dual-luciferase assay showed that miR-186-5p downregulated Smad5 expression via direct binding with the 3′-UTR of Smad5. Collectively then, these findings indicated that ex osomal miR-186-5p derived from MSCs could attenuate renal fibrosis in vitro and in vivo by downregulation of Smad5. These findings may help to understand the role of MSCs’ exosomes in alleviating renal fibrosis in CKD.
Source: Human Cell - Category: Cytology Source Type: research