Magnetic Resonance Imaging (MRI): A Review of Genetic Damage Investigations

Publication date: Available online 21 February 2015 Source:Mutation Research/Reviews in Mutation Research Author(s): Vijayalaxmi , Mahsa Fatahi , Oliver Speck Magnetic resonance imaging (MRI) is a powerful, non-invasive diagnostic medical imaging technique widely used to acquire detailed information about anatomy and function of different organs in the body, in both health and disease. It utilizes electromagnetic fields of three different frequency bands: static magnetic field (SMF), time-varying gradient magnetic fields (GMF) in the kHz range and pulsed radiofrequency fields (RF) in the MHz range. There have been some investigations examining the extent of genetic damage following exposure of bacterial and human cells to all three frequency bands of electromagnetic fields, as used during MRI: the rationale for these studies is the well documented evidence of positive correlation between significantly increased genetic damage and carcinogenesis. Overall, the published data were not sufficiently informative and useful because of the small sample size, inappropriate comparison of experimental groups, etc. Besides, when an increased damage was observed in MRI-exposed cells, the fate of such lesions was not further explored from multiple ‘down-stream’ events. This review provides: (i) information on the basic principles used in MRI technology, (ii) detailed experimental protocols, results and critical comments on the genetic damage investigations thus far conducted usin...
Source: Mutation Research Reviews in Mutation Research - Category: Genetics & Stem Cells Source Type: research