Involvement of α7nAChR in the Protective Effects of Genistein Against β-Amyloid-Induced Oxidative Stress in Neurons via a PI3K/Akt/Nrf2 Pathway-Related Mechanism.

Involvement of α7nAChR in the Protective Effects of Genistein Against β-Amyloid-Induced Oxidative Stress in Neurons via a PI3K/Akt/Nrf2 Pathway-Related Mechanism. Cell Mol Neurobiol. 2020 Nov 19;: Authors: Guo J, Yang G, He Y, Xu H, Fan H, An J, Zhang L, Zhang R, Cao G, Hao D, Yang H Abstract Abnormal excessive production and deposition of β-amyloid (Aβ) peptides in selectively susceptible brain regions are thought to be a key pathogenic mechanism underlying Alzheimer's disease (AD), resulting in memory deficits and cognitive impairment. Genistein is a phytoestrogen with great promise for counteracting diverse Aβ-induced insults, including oxidative stress and mitochondrial dysfunction. However, the exact molecular mechanism or mechanisms underlying the neuroprotective effects of genistein against Aβ-induced insults are largely uncharacterized. To further elucidate the possible mechanism(s) underlying these protective effects, we investigated the neuroprotective effects of genistein against Aβ-induced oxidative stress mediated by orchestrating α7 nicotinic acetylcholine receptor (α7nAChR) signaling in rat primary hippocampal neurons. Genistein significantly increased cell viability, reduced the number of apoptotic cells, decreased accumulation of reactive oxygen species (ROS), decreased contents of malondialdehyde (MDA) and lactate dehydrogenase (LDH), upregulated BCL-2 expression, and suppressed Caspase-3 activity occurring...
Source: Cellular and Molecular Neurobiology - Category: Cytology Authors: Tags: Cell Mol Neurobiol Source Type: research