Sulfiredoxin-1 protects primary cultured astrocytes from ischemia-induced damage

In this study, we used oxygen-glucose deprivation followed by recovery (OGD/R) and hydrogen peroxide (H2O2) to mimic stress from cerebral ischemic damage on primary cultured astrocytes. We found that knockdown of Srxn1 by two shRNAs resulted in decreased cell viability of astrocytes. Decreased level of Srxn1 also correlated with excessive levels of proinflammatory cytokines and chemokines such as TNF-α, MPO, IL-1β, and IL-6. In addition, Srxn1 appeared to influence the strength of TLR4 signaling pathway; the expression of COX-2, IL-6, and NOS2 were strongly induced by OGD/R and H2O2 in astrocyte cultures with Srxn1-shRNAs. Our results suggested that loss of Srxn1 expression in astrocytes may cause excessive activation of inflammatory responses which contribute to OGD/R- and H2O2-induced cell death. Restoring Srxn1 function by gene therapy and/or pharmacology emerges as a promising strategy for the treatment of stroke and other chronic neurodegenerative diseases.
Source: Neurochemistry International - Category: Neuroscience Source Type: research