Suppression of inflammatory cascades via novel cinnamic acid nanoparticles in acute hepatitis rat model.

Suppression of inflammatory cascades via novel cinnamic acid nanoparticles in acute hepatitis rat model. Arch Biochem Biophys. 2020 Oct 31;:108658 Authors: Ibrahim EA, Moawed FSM, Moustafa EM Abstract Hepatitis was characterized by extreme inflammation and hepatocellular damage. Therefore, the current study aimed to gain insights into the modulation role of Cinnamic acid nanoparticles (CANPs) against acute hepatitis induced by d-Galactosamine and gamma radiation exposure (D-Gal/radiation) in the rat model and to suggest the implied molecular mechanism of CANPs. Acute hepatitis seriousness and the serum enzyme activities of ALT, AST, and ALP have been diminished upon oral administration of CANPs. Besides, the hepatic tissue levels of malondialdehyde (MDA) and nitric oxide (NO) have been significantly decreased, and the total antioxidant activity (TAO) depletion was extremely restored. Furthermore, the reduction of hepatic damage caused by pretreatment with CANPs was accompanied by significant suppression in the levels of hepatic proinflammatory cytokines (TNF-α, IL-1β, and IL-18), NF-κB, NLRP3, caspase-1 and proapoptotic protein BAX whereas anti-apoptotic protein Bcl-2 level significantly elevated as compared with D-Gal/radiation-induced acute hepatitis (AH) group. Also, CANPs suppress the D-Gal/radiation-induced IL-1β, IL-18, and ASK1 mRNA gene expression and the protein expression of TLR4 and MyD88 in the hepatic tissue. These b...
Source: Archives of Biochemistry and Biophysics - Category: Biochemistry Authors: Tags: Arch Biochem Biophys Source Type: research