Deficiency of NEAT1 prevented MPP+-induced inflammatory response, oxidative stress and apoptosis in dopaminergic SK-N-SH neuroblastoma cells via miR-1277-5p/ARHGAP26 axis.

This study intended to investigate the role of lncRNA nuclear enriched assembly transcript 1 (NEAT1) in MPP+-induced PD model in dopaminergic neuronblastoma SK-N-SH cells, as well as its mechanism through sponging miRNA (miR)-1277-5p. Real-time PCR and western blotting revealed that NEAT1 and ARHGAP26 were upregulated, and miR-1277-5p was downregulated in MPP+-treated SK-N-SH cells in a certain of concentration- and time- dependent manner. MPP+ induced apoptosis in SK-N-SH cells, as evidenced by decreased cell viability and Bcl-2 expression, and elevated apoptosis rate and levels of Bax and cleaved caspase-3, which were examined by MTT assay, flow cytometry and western blotting. Moreover, commercial assay kits indicated that inflammatory response and oxidative stress were provoked in response to MPP+, due to promoted contents of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, malondialdehyde, and lactate dehydrogenase, accompanied with suppressed superoxide dismutase and glutathione peroxidase levels. Notably, MPP+-induced apoptosis, inflammatory response and oxidative stress in SK-N-SH cells were mitigated by NEAT1 knockdown and/or miR-1277-5p overexpression. Moreover, silencing of miR-1277-5p could abrogate the suppression of NEAT1 deficiency on MPP+-induced cell injury. Similarly, upregulating miR-1277-5p-elicited neuroprotection in MPP+-induced SK-N-SH cells was reversed by ARHGAP26 restoration. Dual-luciferase reporter assay demonstrated a direct interaction betwee...
Source: Brain Research - Category: Neurology Authors: Tags: Brain Res Source Type: research