miR ‑183‑5p attenuates cerebral ischemia injury by negatively regulating PTEN.

miR‑183‑5p attenuates cerebral ischemia injury by negatively regulating PTEN. Mol Med Rep. 2020 Sep 07;: Authors: Zhu L, Zhou X, Li S, Liu J, Yang J, Fan X, Zhou S Abstract Cerebral ischemia is a common cerebrovascular disease caused by the occlusion of a cerebral blood vessel. MicroRNAs (miRNAs/miRs) are emerging regulators of various human diseases, including cerebral ischemia. Upregulation of miR‑183‑5p has been reported to alleviate liver injury induced by ischemia‑reperfusion (I/R). However, the effect of miR‑183‑5p on cerebral ischemia injury remains unknown. The present study evaluated the effects of miR‑183‑5p on ischemia injury using ischemic models of mouse brains exposed to transient middle cerebral artery occlusion and Neuro‑2A (N2A) neuroblastoma cells exposed to oxygen‑glucose‑deprivation (OGD) and subsequently reoxygenated. Ischemia was evaluated in mice using neurological function scores, cerebral edema, 2,3,5‑triphenyltetrazoliumchloride, Nissl and Fluoro‑Jade B staining assays. In addition, miR‑183‑5p expression, N2A cell viability and the expression levels of apoptosis‑associated proteins were detected by quantitative PCR, Cell Counting Kit‑8 assay, flow cytometry and western blotting. The association between miR‑183‑5p and phosphatase and tensin homolog (PTEN) was also confirmed by a luciferase reporter assay. The results revealed that miR‑183‑5p expression was decreased...
Source: Molecular Medicine Reports - Category: Molecular Biology Tags: Mol Med Rep Source Type: research