Knockdown of endogenous RNF4 exacerbates ischaemia-induced cardiomyocyte apoptosis in mice.

Knockdown of endogenous RNF4 exacerbates ischaemia-induced cardiomyocyte apoptosis in mice. J Cell Mol Med. 2020 Jul 28;: Authors: Qiu F, Han Y, Shao X, Paulo P, Li W, Zhu M, Tang N, Guo S, Chen Y, Wu H, Zhao D, Liu Y, Chu W Abstract RNF4, a poly-SUMO-specific E3 ubiquitin ligase, is associated with protein degradation, DNA damage repair and tumour progression. However, the effect of RNF4 in cardiomyocytes remains to be explored. Here, we identified the alteration of RNF4 from ischaemic hearts and oxidative stress-induced apoptotic cardiomyocytes. Upon myocardial infarction (MI) or H2 O2 /ATO treatment, RNF4 increased rapidly and then decreased gradually. PML SUMOylation and PML nuclear body (PML-NB) formation first enhanced and then degraded upon oxidative stress. Reactive oxygen species (ROS) inhibitor was able to attenuate the elevation of RNF4 expression and PML SUMOylation. PML overexpression and RNF4 knockdown by small interfering RNA (siRNA) enhanced PML SUMOylation, promoted p53 recruitment and activation and exacerbated H2 O2 /ATO-induced cardiomyocyte apoptosis which could be partially reversed by knockdown of p53. In vivo, knockdown of endogenous RNF4 via in vivo adeno-associated virus infection deteriorated post-MI structure remodelling including more extensive interstitial fibrosis and severely fractured and disordered structure. Furthermore, knockdown of RNF4 worsened ischaemia-induced cardiac dysfunction of MI models. ...
Source: J Cell Mol Med - Category: Molecular Biology Authors: Tags: J Cell Mol Med Source Type: research