Cold atmospheric plasma induces silver nanoparticle uptake, oxidative dissolution and enhanced cytotoxicity in glioblastoma multiforme cells.

Cold atmospheric plasma induces silver nanoparticle uptake, oxidative dissolution and enhanced cytotoxicity in glioblastoma multiforme cells. Arch Biochem Biophys. 2020 Jun 23;:108462 Authors: Manaloto E, Gowen A, Lesniak A, He Z, Casey A, Cullen PJ, Curtin JF Abstract Silver nanoparticles (AgNP) emerged as a promising reagent for cancer therapy with oxidative stress implicated in the toxicity. Meanwhile, studies reported cold atmospheric plasma (CAP) generation of reactive oxygen and nitrogen species has selectivity towards cancer cells. Gold nanoparticles display synergistic cytotoxicity when combined with CAP against cancer cells but there is a paucity of information using AgNP, prompting to investigate the combined effects of CAP using dielectric barrier discharge system (voltage of 75 kV, current is 62.5 mA, duty cycle of 7.5kVA and input frequency of 50-60Hz) and 10 nm PVA-coated AgNP using U373MG Glioblastoma Multiforme cells. Cytotoxicity in U373MG cells was >100-fold greater when treated with both CAP and PVA-AgNP compared with either therapy alone (IC50 of 4.30 μg/mL with PVA-AgNP alone compared with 0.07 μg/mL after 25s CAP and 0.01 μg/mL 40s CAP). Combined cytotoxicity was ROS-dependent and was prevented using N-Acetyl Cysteine. A novel darkfield spectral imaging method investigated and quantified AgNP uptake in cells determining significantly enhanced uptake, aggregation and subcellular accumulation fol...
Source: Archives of Biochemistry and Biophysics - Category: Biochemistry Authors: Tags: Arch Biochem Biophys Source Type: research