Roles of Prokineticin 2 in Subarachnoid Hemorrhage-Induced Early Brain Injury via Regulation of Phenotype Polarization in Astrocytes

This study aimed to examine the role of PK2 in early brain injury (EBI) caused by subarachnoid hemorrhage (SAH). SAH-induced astrocytic activation was confirmed by Western blotting. We confirmed C3 an d PTX3 as appropriate reactivity markers for discriminating A1 and A2 astrocytes, respectively. We also observed SAH-induced astrocytic activation in SAH patients. The increase of PK2 in neurons after SAH in both humans and rats suggested a possible relationship between PK2 and SAH pathology. PK2 kn ockdown promoted an A1 astrocytic phenotype with upregulation of neurodegenerative indicators, while intravascular injection of recombinant PK2 (rPK2) promoted A2 astrocytic phenotype and reduced SAH-induced neuronal injury and behavioral dysfunction. Finally, we identified that tumor necrosis facto r alpha (TNF-α) was sufficient to elevate the protein level of PK2 in neurons and enhance astrocytic activation in vitro. Moreover, rPK2 selectively promoted astrocytic polarization to an A2 phenotype under a TNF-α stimulus and induced phosphorylation of signal transducer and activator of transcri ption 3 (STAT3), suggesting that SAH-induced increases in PK2 may function as an endogenous mechanism for self-repair. Collectively, our findings support that enhancing PK2 expression or administration of rPK2 may induce a selective modulation of astrocytic polarization to a protective phenotype fol lowing SAH-like stimuli.
Source: Molecular Neurobiology - Category: Neurology Source Type: research