Knockdown of Long Non-Coding RNA AFAP1-AS1 Promoted Viability and Suppressed Death of Cardiomyocytes in Response to I/R In Vitro and In Vivo

AbstractLong non-coding RNA (lncRNA) plays a pivotal role in the development of myocardial infarction (MI). The aim of this study was to investigate the effects of lncRNA actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) on cell cycle, proliferation, and apoptosis. RT-qPCR was used to detect the expression levels of AFAP1-AS1, miR-512-3p, and reticulon 3 (RTN3) in rat model of I/R. The simulated MI environment was constructed. MTT assay and flow cytometry were used to detect changes in cardiomyocyte viability and cell cycle/apoptosis after MI by AFAP1-AS1 silencing or RTN3 silencing. The targeting relationship of miR-512-3p and AFAP1-AS1 and RTN3 in cardiomyocytes was verified by dual luciferase reporter assay. The expression levels of AFAP1-AS1 and RTN3 were significantly upregulated in a rat model of LAD ligation (or MI) ligation, while the expression level of miR-512-3p was significantly reduced. Overexpressed AFAP1-AS1 and RTN3 promoted cardiomyocyte apoptosis and inhibited cardiomyocyte proliferation. MiR-512-3p was a direct target of AFAP1-AS1, and RTN3 was a direct target of miR-512-3p. AFAP1-AS1 promoted the progression of MI by targeting miR-512-3p. AFAP1-AS1 promoted the progression of MI by modulating the miR-512-3p/RTN3 axis. AFAP1-AS1 may be a potential therapy target for MI.Graphical AbstractThe role of AFAP1-AS1 in regulating MI injury in vivo. (A) Effect of AFAP1-AS1 in MI injury in vivo. (B) The mRNA level of RTN3 in MI injury in vivo. (C) The p...
Source: Journal of Cardiovascular Translational Research - Category: Cardiology Source Type: research