Speculating on Circumstances in Which Group Selection of Aging Can Occur

The consensus view on the evolution of aging is that it is a consequence of a race to the bottom in terms of competition for early life reproductive success. The result is mechanisms and systems that aid early fitness at the cost of later dysfunction - and consequent aging and death. This is known as the antagonistic pleiotropy hypothesis. So we exist, do pretty well at the outset of life, but are equipped with a biochemistry that is incapable of repairing itself well enough for the long term. Some metabolic byproducts cannot be broken down, and accumulate to cause issues. The adaptive immune system must store information, and eventually runs out of capacity. And so on. There are other minority viewpoints on the evolution of aging, numerous varieties of the programmed aging hypothesis. In this view, degenerative aging is directly selected rather than a side-effect. It is in some way advantageous to fitness. Looking at today's research materials, the variety of programmed aging hypothesis that springs to mind is the one invoking group selection: aging exists to control the population so that ecosystem collapse is avoided. Speaking generally, group selection is not well regarded, and not thought a valid mechanism of evolution. But are there circumstances in which researchers believe that group selection could be involved in the evolution of aging? The example here is a collection of organisms that are all clones of one another - such as microbes, or some lower animals su...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs