Neuropilin-1 receptor in the rapid and selective estrogen estrogen-induced neurovascular remodeling of rat uterus

AbstractSympathetic nerves innervate most organs and regulate organ blood flow. Specifically, in the uterus, estradiol (E2) elicits rapid degeneration of sympathetic axons and stimulates the growth of blood vessels. Both physiological remodeling processes, critical for reproduction, have been extensively studied but as independent events and are still not fully understood. Here, we examine the neuropilin-1 (NRP1), a shared receptor for axon guidance and angiogenic factors. Systemic estradiol or vehicle were chronically injected to prepubertal rats and uterine and sympathetic chain sections immunostained for NRP1. Uterine semaphorin-3A mRNA was evaluated by in situ hybridization. Control sympathetic uterine-projecting neurons (1-month-old) expressed NRP1 in their somas but not in their intrauterine terminal axons. Estradiol did not affect NRP1 in the distal ganglia. However, at the entrance of the organ, some sympathetic NRP1-positive nerves were recognized. Vascular NRP1 was confined to intrauterine small-diameter vessels in both hormonal conditions. Although the overall pattern of NRP1-IR was not affected by E2 treatment, a subpopulation of infiltrated eosinophil leukocytes showed immunoreactivity for NRP1. Sema3A transcripts were detected in this cellular type as well. No NRP1-immunoreactive axons nor infiltrated eosinophils were visualized in other estrogenized pelvic organs. Together, these data suggest the involvement of NRP1/Sema3A signaling in the selective E2-induced ...
Source: Cell and Tissue Research - Category: Cytology Source Type: research