Mitochondrial Quality Control in the Heart: New Drug Targets for Cardiovascular Disease.

Mitochondrial Quality Control in the Heart: New Drug Targets for Cardiovascular Disease. Korean Circ J. 2020 May;50(5):395-405 Authors: Oh CM, Ryu D, Cho S, Jang Y Abstract Despite considerable efforts to prevent and treat cardiovascular disease (CVD), it has become the leading cause of death worldwide. Cardiac mitochondria are crucial cell organelles responsible for creating energy-rich ATP and mitochondrial dysfunction is the root cause for developing heart failure. Therefore, maintenance of mitochondrial quality control (MQC) is an essential process for cardiovascular homeostasis and cardiac health. In this review, we describe the major mechanisms of MQC system, such as mitochondrial unfolded protein response and mitophagy. Moreover, we describe the results of MQC failure in cardiac mitochondria. Furthermore, we discuss the prospects of 2 drug candidates, urolithin A and spermidine, for restoring mitochondrial homeostasis to treat CVD. PMID: 32216174 [PubMed]
Source: Korean Circulation Journal - Category: Cardiology Tags: Korean Circ J Source Type: research

Related Links:

CONCLUSIONS: Macrophage Drp1 accelerates intimal thickening after vascular injury by promoting macrophage-mediated inflammation. Macrophage Drp1 may be a potential therapeutic target of vascular diseases. PMID: 32493171 [PubMed - as supplied by publisher]
Source: Arteriosclerosis, Thrombosis and Vascular Biology - Category: Cardiology Authors: Tags: Arterioscler Thromb Vasc Biol Source Type: research
Evidence strongly suggests that the global faltering of mitochondrial function throughout the body with advancing age has a lot to do with a decline in the effectiveness of mitophagy. Mitochondria are the power plants of the cell, a herd of hundreds swarming and replicating like bacteria in every cell to produce the chemical energy store molecule ATP. Mitophagy is the specialized form of autophagy that destroys worn and damaged mitochondria, recycling their component parts. Without it, cells would become overtaken by broken, malfunctioning mitochondria. Mitochondrial dysfunction leads to too little ATP, but also higher lev...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs
Fight Aging! publishes news and commentary relevant to the goal of ending all age-related disease, to be achieved by bringing the mechanisms of aging under the control of modern medicine. This weekly newsletter is sent to thousands of interested subscribers. To subscribe or unsubscribe from the newsletter, please visit: https://www.fightaging.org/newsletter/ Longevity Industry Consulting Services Reason, the founder of Fight Aging! and Repair Biotechnologies, offers strategic consulting services to investors, entrepreneurs, and others interested in the longevity industry and its complexities. To find out m...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
A fair amount of effort is presently put towards the exploration of supplements derived from vitamin B3 compounds (nicotinamide, niacin, nicotinamide riboside) that act as precursors to enable the manufacture of nicotinamide adenine dinucleotide (NAD). NAD is an important component in mitochondrial activity, and levels decline with age. Some portion of the loss of mitochondrial function, implicated in the progression of many age-related conditions, is due to NAD insufficiency. There is a rich history of the use of high doses of vitamin B3 as an intervention, most of it predating modern understanding of the role of NAD in m...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs
Accumulation of methylglyoxal (MG) contributes to oxidative stress, apoptosis, and mitochondrial dysfunction, leading to the development of type 2 diabetes and cardiovascular diseases. Inhibition of mitochondrial abnormalities induced by MG in the heart may improve and delay the progression of heart failure. Although glucagon-like peptide-1 receptor (GLP-1R) agonists have been used as anti-diabetic drugs and GLP-1R has been detected in the heart, the cardioprotective effects of GLP-1R agonists on the inhibition of MG-induced oxidative stress and mitochondrial abnormalities have not been elucidated. Stimulation of GLP-1Rs l...
Source: Frontiers in Pharmacology - Category: Drugs & Pharmacology Source Type: research
Abstract Diabetes mellitus predisposes affected individuals to a significant spectrum of cardiovascular complications, one of the most debilitating in terms of prognosis is heart failure. Indeed, the increasing global prevalence of diabetes mellitus and an aging population has given rise to an epidemic of diabetes mellitus-induced heart failure. Despite the significant research attention this phenomenon, termed diabetic cardiomyopathy, has received over several decades, understanding of the full spectrum of potential contributing mechanisms, and their relative contribution to this heart failure phenotype in the sp...
Source: Circulation Research - Category: Cardiology Authors: Tags: Circ Res Source Type: research
This study provides direct evidence for the contribution of gut microbiota to the cognitive decline during normal aging and suggests that restoring microbiota homeostasis in the elderly may improve cognitive function. On Nutraceutical Senolytics https://www.fightaging.org/archives/2020/05/on-nutraceutical-senolytics/ Nutraceuticals are compounds derived from foods, usually plants. In principle one can find useful therapies in the natural world, taking the approach of identifying interesting molecules and refining them to a greater potency than naturally occurs in order to produce a usefully large therape...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
res E Abstract Ischemic heart disease is the main cause of death globally. In the heart, the ischemia/reperfusion injury gives rise to a complex cascade of molecular signals, called cardiac remodeling, which generates harmful consequences for the contractile function of the myocardium and consequently heart failure. Metformin is the drug of choice in the treatment of type 2 diabetes mellitus. Clinical data suggest the direct effects of this drug on cardiac metabolism and studies in animal models showed that metformin activates the classical pathway of AMP-activated protein kinase (AMPK), generating cardioprotectiv...
Source: Current Pharmaceutical Design - Category: Drugs & Pharmacology Authors: Tags: Curr Pharm Des Source Type: research
, Sedlić F Abstract Mitochondria are involved in crucial homeostatic processes in the cell: the production of adenosine triphosphate and reactive oxygen species, and the release of pro-apoptotic molecules. Thus, cell survival depends on the maintenance of proper mitochondrial function by mitochondrial quality control. The most important mitochondrial quality control mechanisms are mitochondrial unfolded protein response, mitophagy, biogenesis, and fusion-fission dynamics. This review deals with mitochondrial quality control in heart diseases, especially myocardial infarction and heart failure. Some previous studi...
Source: Croatian Medical Journal - Category: General Medicine Authors: Tags: Croat Med J Source Type: research
In conclusion, our study demonstrated that Nrf2 deficiency promoted the increasing trend of autophagy during aging in skeletal muscle. Nrf2 deficiency and increasing age may cause excessive autophagy in skeletal muscle, which can be a potential mechanism for the development of sarcopenia. To What Degree is Chondrocyte Hypertrophy in Osteoarthritis Due to Cellular Senescence? https://www.fightaging.org/archives/2020/04/to-what-degree-is-chondrocyte-hypertrophy-in-osteoarthritis-due-to-cellular-senescence/ Senescent cells are large. They do not replicate, that function is disabled, but it is as if they go ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
More News: Cardiology | Cardiovascular | Heart | Heart Failure | Mitochondria | Mitochondrial Disease