Metabolic Control of Astrocyte Pathogenic Activity via cPLA2-MAVS

Publication date: Available online 5 December 2019Source: CellAuthor(s): Chun-Cheih Chao, Cristina Gutiérrez-Vázquez, Veit Rothhammer, Lior Mayo, Michael A. Wheeler, Emily C. Tjon, Stephanie E.J. Zandee, Manon Blain, Kalil Alves de Lima, Maisa C. Takenaka, Julian Avila-Pacheco, Patrick Hewson, Lei Liu, Liliana M. Sanmarco, Davis M. Borucki, Gabriel Z. Lipof, Sunia A. Trauger, Clary B. Clish, Jack P. Antel, Alexandre PratSummaryMetabolism has been shown to control peripheral immunity, but little is known about its role in central nervous system (CNS) inflammation. Through a combination of proteomic, metabolomic, transcriptomic, and perturbation studies, we found that sphingolipid metabolism in astrocytes triggers the interaction of the C2 domain in cytosolic phospholipase A2 (cPLA2) with the CARD domain in mitochondrial antiviral signaling protein (MAVS), boosting NF-κB-driven transcriptional programs that promote CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis. cPLA2 recruitment to MAVS also disrupts MAVS-hexokinase 2 (HK2) interactions, decreasing HK enzymatic activity and the production of lactate involved in the metabolic support of neurons. Miglustat, a drug used to treat Gaucher and Niemann-Pick disease, suppresses astrocyte pathogenic activities and ameliorates EAE. Collectively, these findings define a novel immunometabolic mechanism that drives pro-inflammatory astrocyte activities, outlines a new role for MA...
Source: Cell - Category: Cytology Source Type: research