Chronic Inflammation as a Contributing Cause of B Cell Decline in Aging

B cells are important to the coordination of the immune response. Dysfunctional B cells emerge with age, however, leading to autoimmunity and contributing to immunosenescence, the name given to the general age-related decline in effectiveness of the immune system. Animal studies have shown that selective destruction of the entire B cell population is beneficial in older individuals, improving the immune response: the cells are quickly replaced, but the harmful portion will take much longer to reemerge. Setting all of this to one side, the open access review here is largely focused on more subtle changes in the B cell population and its production in the bone marrow, driven by the effects of age-related chronic inflammation on stem cells and progenitor cells. The alterations of the B-cell compartment in aging have been evaluated by contrast to B-cell physiology in young adults. Overall, B-cell generation and function demonstrate large similarities between young mice and humans. In the more detailed mouse context, B cells arise from uncommitted progenitors nested in the bone marrow. Overall, aging disturbs B-cell development in the mouse bone marrow. Strikingly, aging seems to introduce a high mouse-to-mouse variability in early progenitor B cellularity compared to young mice. Impaired B-cell development occurs as a result of affected RAG and SLC expression, as well as decreased sensitivity to IL-7 signals. The in-depth situation in humans remains to be established. Ne...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs